11,555 research outputs found

    Selection bias in dynamically-measured super-massive black hole samples: consequences for pulsar timing arrays

    Full text link
    Supermassive black hole -- host galaxy relations are key to the computation of the expected gravitational wave background (GWB) in the pulsar timing array (PTA) frequency band. It has been recently pointed out that standard relations adopted in GWB computations are in fact biased-high. We show that when this selection bias is taken into account, the expected GWB in the PTA band is a factor of about three smaller than previously estimated. Compared to other scaling relations recently published in the literature, the median amplitude of the signal at f=1f=1yr−1^{-1} drops from 1.3×10−151.3\times10^{-15} to 4×10−164\times10^{-16}. Although this solves any potential tension between theoretical predictions and recent PTA limits without invoking other dynamical effects (such as stalling, eccentricity or strong coupling with the galactic environment), it also makes the GWB detection more challenging.Comment: 6 pages 4 figures, submitted to MNRAS letter

    A Statistical Semi-Empirical Model: Satellite galaxies in Groups and Clusters

    Full text link
    We present STEEL a STatistical sEmi-Empirical modeL designed to probe the distribution of satellite galaxies in groups and clusters. Our fast statistical methodology relies on tracing the abundances of central and satellite haloes via their mass functions at all cosmic epochs with virtually no limitation on cosmic volume and mass resolution. From mean halo accretion histories and subhalo mass functions the satellite mass function is progressively built in time via abundance matching techniques constrained by number densities of centrals in the local Universe. By enforcing dynamical merging timescales as predicted by high-resolution N-body simulations, we obtain satellite distributions as a function of stellar mass and halo mass consistent with current data. We show that stellar stripping, star formation, and quenching play all a secondary role in setting the number densities of massive satellites above M∗≳3×1010 M⊙M_*\gtrsim 3\times 10^{10}\, M_{\odot}. We further show that observed star formation rates used in our empirical model over predict low-mass satellites below M∗≲3×1010 M⊙M_*\lesssim 3\times 10^{10}\, M_{\odot}, whereas, star formation rates derived from a continuity equation approach yield the correct abundances similar to previous results for centrals.Comment: 21 pages, 17 Figures. MNRAS, in pres

    Respiratory muscle training with normocapnic hyperpnea improves ventilatory pattern and thoracoabdominal coordination, and reduces oxygen desaturation during endurance exercise testing in COPD patients

    Get PDF
    Background: Few data are available about the effects of respiratory muscle training with normocapnic hyperpnea (NH) in COPD. The aim is to evaluate the effects of 4 weeks of NH (Spirotiger®) on ventilatory pattern, exercise capacity, and quality of life (QoL) in COPD patients. Methods: Twenty-six COPD patients (three females), ages 49-82 years, were included in this study. Spirometry and maximal inspiratory pressure, St George Respiratory Questionnaire, 6-minute walk test, and symptom-limited endurance exercise test (endurance test to the limit of tolerance [tLim]) at 75%-80% of peak work rate up to a Borg Score of 8-9/10 were performed before and after NH. Patients were equipped with ambulatory inductive plethysmography (LifeShirt®) to evaluate ventilatory pattern and thoracoabdominal coordination (phase angle [PhA]) during tLim. After four supervised sessions, subjects trained at home for 4 weeks 10 minutes twice a day at 50% of maximal voluntary ventilation. The workload was adjusted during the training period to maintain a Borg Score of 5-6/10. Results: Twenty subjects completed the study. After NH, maximal inspiratory pressure significantly increased (81.5±31.6 vs 91.8±30.6 cmH2O, P<0.01); exercise endurance time (+150 seconds, P=0.04), 6-minute walk test (+30 meters, P=0.03), and QoL (-8, P<0.01) all increased. During tLim, the ventilatory pattern changed significantly (lower ventilation, lower respiratory rate, higher tidal volume); oxygen desaturation, PhA, and dyspnea Borg Score were lower for the same work intensity (P<0.01, P=0.02, and P<0.01, respectively; one-way ANOVA). The improvement in tidal volume and oxygen saturation after NH were significantly related (R2=0.65, P<0.01). Conclusion: As expected, NH improves inspiratory muscle performance, exercise capacity, and QoL. New results are significant change in ventilatory pattern, which improves oxygen saturation, and an improvement in thoracoabdominal coordination (lower PhA). These two facts could explain the reduced dyspnea during the endurance test. All these results together may play a role in improving exercise capacity after NH training

    Program schemes with deep pushdown storage.

    Get PDF
    Inspired by recent work of Meduna on deep pushdown automata, we consider the computational power of a class of basic program schemes, TeX, based around assignments, while-loops and non- deterministic guessing but with access to a deep pushdown stack which, apart from having the usual push and pop instructions, also has deep-push instructions which allow elements to be pushed to stack locations deep within the stack. We syntactically define sub-classes of TeX by restricting the occurrences of pops, pushes and deep-pushes and capture the complexity classes NP and PSPACE. Furthermore, we show that all problems accepted by program schemes of TeX are in EXPTIME

    The Stellar Mass Fundamental Plane: The virial relation and a very thin plane for slow-rotators

    Full text link
    Early-type galaxies -- slow and fast rotating ellipticals (E-SRs and E-FRs) and S0s/lenticulars -- define a Fundamental Plane (FP) in the space of half-light radius ReR_e, enclosed surface brightness IeI_e and velocity dispersion σe\sigma_e. Since IeI_e and σe\sigma_e are distance-independent measurements, the thickness of the FP is often expressed in terms of the accuracy with which IeI_e and σe\sigma_e can be used to estimate sizes ReR_e. We show that: 1) The thickness of the FP depends strongly on morphology. If the sample only includes E-SRs, then the observed scatter in ReR_e is ∼16%\sim 16\%, of which only ∼9%\sim 9\% is intrinsic. Removing galaxies with M∗<1011M⊙M_*<10^{11}M_\odot further reduces the observed scatter to ∼13%\sim 13\% (∼4%\sim 4\% intrinsic). The observed scatter increases to the ∼25%\sim 25\% usually quoted in the literature if E-FRs and S0s are added. If the FP is defined using the eigenvectors of the covariance matrix of the observables, then the E-SRs again define an exceptionally thin FP, with intrinsic scatter of only 5%5\% orthogonal to the plane. 2) The structure within the FP is most easily understood as arising from the fact that IeI_e and σe\sigma_e are nearly independent, whereas the Re−IeR_e-I_e and Re−σeR_e-\sigma_e correlations are nearly equal and opposite. 3) If the coefficients of the FP differ from those associated with the virial theorem the plane is said to be `tilted'. If we multiply IeI_e by the global stellar mass-to-light ratio M∗/LM_*/L and we account for non-homology across the population by using S\'ersic photometry, then the resulting stellar mass FP is less tilted. Accounting self-consistently for M∗/LM_*/L gradients will change the tilt. The tilt we currently see suggests that the efficiency of turning baryons into stars increases and/or the dark matter fraction decreases as stellar surface brightness increases.Comment: 13 pages, 9 figures, 3 tables, accepted for publication in MNRA

    The ages, metallicities and star formation histories of early-type galaxies in SDSS

    Get PDF
    We use the spectra of ~ 22,000 early-type galaxies, selected from the Sloan Digital Sky Survey, to infer the ages, metallicities and star formation histories of these galaxies. We find clear evidence of "downsizing", i.e. galaxies with larger velocity dispersion have older stellar populations. In particular, most early-type galaxies with velocity dispersion exceeding 200 km s-1 formed more than 90% of their current stellar mass at redshift z > 2.5. Therefore, star formation was suppressed around this redshift. We also show that chemical enrichment was rapid, lasting 1-2 Gyr and find evidence that [Fe/H] is sub-solar. We study the robustness of these results by comparing three different approaches: using (i) Lick absorption line indices; (ii) fitting a single-burst stellar population model to the whole spectrum (lines+continuum); and (iii) reconstructing the star formation and metallicity histories in multiple age-bins, providing a method to measure mass-weighted ages and metallicities. We find good agreement between the luminosity-weighted ages and metallicities computed with these three methods.Comment: Submitted to Ap

    Kelvin probe characterization of buried graphitic microchannels in single-crystal diamond

    Full text link
    In this work, we present an investigation by Kelvin Probe Microscopy (KPM) of buried graphitic microchannels fabricated in single-crystal diamond by direct MeV ion microbeam writing. Metal deposition of variable-thickness masks was adopted to implant channels with emerging endpoints and high temperature annealing was performed in order to induce the graphitization of the highly-damaged buried region. When an electrical current was flowing through the biased buried channel, the structure was clearly evidenced by KPM maps of the electrical potential of the surface region overlying the channel at increasing distances from the grounded electrode. The KPM profiling shows regions of opposite contrast located at different distances from the endpoints of the channel. This effect is attributed to the different electrical conduction properties of the surface and of the buried graphitic layer. The model adopted to interpret these KPM maps and profiles proved to be suitable for the electronic characterization of buried conductive channels, providing a non-invasive method to measure the local resistivity with a micrometer resolution. The results demonstrate the potential of the technique as a powerful diagnostic tool to monitor the functionality of all-carbon graphite/diamond devices to be fabricated by MeV ion beam lithography.Comment: 21 pages, 5 figure

    The use of aerial- and close-range photogrammetry for the mapping of the Lavini di Marco tracksite (Hettangian, Southern Alps, NE Italy)

    Get PDF
    (EXCERPT FROM ABSTRACT) Close-range photogrammetry was executed following the procedure proposed by Mallison &amp; Wings (2014). More than seventy 3D models were obtained and interpreted by means of color-coded and contour line images, which allow to improve the ichno- logical knowledge of the tracksite. The 3D models of the best-preserved tracks were used for the osteological reconstruction of the trackmakers’ autopodia, supposing the arthral position of the phalangeal pads. Three indirect methods were used to correlate tracks and their trackmakers: (i) synapomorphy-based approach; (ii) phenetic correlation; (iii) coincidence correlation (see Carrano &amp; Wilson, 2001) The final map was produced with different level of knowledge due to the distribution of tracks and current state of site preservation. Furthermore, it represents a complete documentation that will be used for future work of enhancement, preservation and valorization of the tracksite. The ichnotaxonomical review of the quadrupedal trackways led us to emend the diagnosis of Lavinipes cheminii Avanzini et al. (2003) and to assign several other sparse tracks and trackways to L. chemini. The skeletal reconstruction of fore and hind limbs points towards Gongxianosaurus sp. as the most suitable trackmaker of L. cheminii. The herein supposed Laurasian affinity of the Lavini di Marco dinosaur assemblage clashes with the previous hypotheses that always link the Southern Alps sector with the Gondwana mainland
    • …
    corecore